OXIESEC PANEL
- Current Dir:
/
/
opt
/
golang
/
1.22.0
/
src
/
math
Server IP: 191.96.63.230
Upload:
Create Dir:
Name
Size
Modified
Perms
π
..
-
02/02/2024 06:09:55 PM
rwxr-xr-x
π
abs.go
366 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
acos_s390x.s
3.73 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
acosh.go
1.71 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
acosh_s390x.s
4.32 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
all_test.go
86.77 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
arith_s390x.go
3.73 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
arith_s390x_test.go
10.78 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
asin.go
1.09 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
asin_s390x.s
4.16 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
asinh.go
1.92 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
asinh_s390x.s
5.74 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
atan.go
3.03 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
atan2.go
1.52 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
atan2_s390x.s
6.93 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
atan_s390x.s
3.69 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
atanh.go
1.99 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
atanh_s390x.s
5.06 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
big
-
02/02/2024 06:09:55 PM
rwxr-xr-x
π
bits
-
02/02/2024 06:09:55 PM
rwxr-xr-x
π
bits.go
1.87 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
cbrt.go
2.31 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
cbrt_s390x.s
4.89 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
cmplx
-
02/02/2024 06:09:55 PM
rwxr-xr-x
π
const.go
2.76 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
const_test.go
1.29 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
copysign.go
396 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
cosh_s390x.s
5.59 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
dim.go
1.87 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
dim_amd64.s
1.92 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
dim_arm64.s
963 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
dim_asm.go
344 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
dim_noasm.go
410 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
dim_riscv64.s
1.16 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
dim_s390x.s
1.97 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
erf.go
11.51 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
erf_s390x.s
8.5 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
erfc_s390x.s
14.4 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
erfinv.go
3.37 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
example_test.go
3.75 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
exp.go
5.38 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
exp2_asm.go
252 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
exp2_noasm.go
284 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
exp_amd64.go
261 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
exp_amd64.s
4.24 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
exp_arm64.s
5.36 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
exp_asm.go
268 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
exp_noasm.go
302 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
exp_s390x.s
4.65 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
expm1.go
7.91 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
expm1_s390x.s
5.29 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
export_s390x_test.go
732 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
export_test.go
357 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
floor.go
3.29 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_386.s
1.47 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_amd64.s
2 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_arm64.s
573 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_asm.go
431 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_noasm.go
531 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_ppc64x.s
499 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_s390x.s
579 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
floor_wasm.s
459 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
fma.go
4.61 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
frexp.go
929 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
gamma.go
5.53 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
huge_test.go
2.91 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
hypot.go
850 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
hypot_386.s
1.81 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
hypot_amd64.s
1.05 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
hypot_asm.go
264 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
hypot_noasm.go
297 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
j0.go
13.6 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
j1.go
13.3 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
jn.go
7.18 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
ldexp.go
1.05 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
lgamma.go
11.03 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
log.go
3.86 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
log10.go
873 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
log10_s390x.s
4.73 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
log1p.go
6.34 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
log1p_s390x.s
5.15 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
log_amd64.s
3.66 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
log_asm.go
259 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
log_s390x.s
4.31 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
log_stub.go
292 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
logb.go
1021 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
mod.go
903 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
modf.go
913 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
modf_arm64.s
447 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
modf_asm.go
292 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
modf_noasm.go
326 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
modf_ppc64x.s
416 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
nextafter.go
1.21 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
pow.go
3.65 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
pow10.go
1.24 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
pow_s390x.s
16.27 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
rand
-
02/02/2024 06:09:55 PM
rwxr-xr-x
π
remainder.go
2.04 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
signbit.go
302 bytes
02/02/2024 06:09:55 PM
rw-r--r--
π
sin.go
6.35 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
sin_s390x.s
8.57 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
sincos.go
1.76 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
sinh.go
1.69 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
sinh_s390x.s
5.98 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
sqrt.go
4.75 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
stubs.go
2.57 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
stubs_s390x.s
12.38 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
tan.go
3.68 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
tan_s390x.s
2.72 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
tanh.go
2.66 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
tanh_s390x.s
4.57 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
trig_reduce.go
3.34 KB
02/02/2024 06:09:55 PM
rw-r--r--
π
unsafe.go
1.27 KB
02/02/2024 06:09:55 PM
rw-r--r--
Editing: jn.go
Close
// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math /* Bessel function of the first and second kinds of order n. */ // The original C code and the long comment below are // from FreeBSD's /usr/src/lib/msun/src/e_jn.c and // came with this notice. The go code is a simplified // version of the original C. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // __ieee754_jn(n, x), __ieee754_yn(n, x) // floating point Bessel's function of the 1st and 2nd kind // of order n // // Special cases: // y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; // y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. // Note 2. About jn(n,x), yn(n,x) // For n=0, j0(x) is called, // for n=1, j1(x) is called, // for n<x, forward recursion is used starting // from values of j0(x) and j1(x). // for n>x, a continued fraction approximation to // j(n,x)/j(n-1,x) is evaluated and then backward // recursion is used starting from a supposed value // for j(n,x). The resulting value of j(0,x) is // compared with the actual value to correct the // supposed value of j(n,x). // // yn(n,x) is similar in all respects, except // that forward recursion is used for all // values of n>1. // Jn returns the order-n Bessel function of the first kind. // // Special cases are: // // Jn(n, Β±Inf) = 0 // Jn(n, NaN) = NaN func Jn(n int, x float64) float64 { const ( TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000 Two302 = 1 << 302 // 2**302 0x52D0000000000000 ) // special cases switch { case IsNaN(x): return x case IsInf(x, 0): return 0 } // J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x) // Thus, J(-n, x) = J(n, -x) if n == 0 { return J0(x) } if x == 0 { return 0 } if n < 0 { n, x = -n, -x } if n == 1 { return J1(x) } sign := false if x < 0 { x = -x if n&1 == 1 { sign = true // odd n and negative x } } var b float64 if float64(n) <= x { // Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) if x >= Two302 { // x > 2**302 // (x >> n**2) // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) // Let s=sin(x), c=cos(x), // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then // // n sin(xn)*sqt2 cos(xn)*sqt2 // ---------------------------------- // 0 s-c c+s // 1 -s-c -c+s // 2 -s+c -c-s // 3 s+c c-s var temp float64 switch s, c := Sincos(x); n & 3 { case 0: temp = c + s case 1: temp = -c + s case 2: temp = -c - s case 3: temp = c - s } b = (1 / SqrtPi) * temp / Sqrt(x) } else { b = J1(x) for i, a := 1, J0(x); i < n; i++ { a, b = b, b*(float64(i+i)/x)-a // avoid underflow } } } else { if x < TwoM29 { // x < 2**-29 // x is tiny, return the first Taylor expansion of J(n,x) // J(n,x) = 1/n!*(x/2)**n - ... if n > 33 { // underflow b = 0 } else { temp := x * 0.5 b = temp a := 1.0 for i := 2; i <= n; i++ { a *= float64(i) // a = n! b *= temp // b = (x/2)**n } b /= a } } else { // use backward recurrence // x x**2 x**2 // J(n,x)/J(n-1,x) = ---- ------ ------ ..... // 2n - 2(n+1) - 2(n+2) // // 1 1 1 // (for large x) = ---- ------ ------ ..... // 2n 2(n+1) 2(n+2) // -- - ------ - ------ - // x x x // // Let w = 2n/x and h=2/x, then the above quotient // is equal to the continued fraction: // 1 // = ----------------------- // 1 // w - ----------------- // 1 // w+h - --------- // w+2h - ... // // To determine how many terms needed, let // Q(0) = w, Q(1) = w(w+h) - 1, // Q(k) = (w+k*h)*Q(k-1) - Q(k-2), // When Q(k) > 1e4 good for single // When Q(k) > 1e9 good for double // When Q(k) > 1e17 good for quadruple // determine k w := float64(n+n) / x h := 2 / x q0 := w z := w + h q1 := w*z - 1 k := 1 for q1 < 1e9 { k++ z += h q0, q1 = q1, z*q1-q0 } m := n + n t := 0.0 for i := 2 * (n + k); i >= m; i -= 2 { t = 1 / (float64(i)/x - t) } a := t b = 1 // estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n) // Hence, if n*(log(2n/x)) > ... // single 8.8722839355e+01 // double 7.09782712893383973096e+02 // long double 1.1356523406294143949491931077970765006170e+04 // then recurrent value may overflow and the result is // likely underflow to zero tmp := float64(n) v := 2 / x tmp = tmp * Log(Abs(v*tmp)) if tmp < 7.09782712893383973096e+02 { for i := n - 1; i > 0; i-- { di := float64(i + i) a, b = b, b*di/x-a } } else { for i := n - 1; i > 0; i-- { di := float64(i + i) a, b = b, b*di/x-a // scale b to avoid spurious overflow if b > 1e100 { a /= b t /= b b = 1 } } } b = t * J0(x) / b } } if sign { return -b } return b } // Yn returns the order-n Bessel function of the second kind. // // Special cases are: // // Yn(n, +Inf) = 0 // Yn(n β₯ 0, 0) = -Inf // Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even // Yn(n, x < 0) = NaN // Yn(n, NaN) = NaN func Yn(n int, x float64) float64 { const Two302 = 1 << 302 // 2**302 0x52D0000000000000 // special cases switch { case x < 0 || IsNaN(x): return NaN() case IsInf(x, 1): return 0 } if n == 0 { return Y0(x) } if x == 0 { if n < 0 && n&1 == 1 { return Inf(1) } return Inf(-1) } sign := false if n < 0 { n = -n if n&1 == 1 { sign = true // sign true if n < 0 && |n| odd } } if n == 1 { if sign { return -Y1(x) } return Y1(x) } var b float64 if x >= Two302 { // x > 2**302 // (x >> n**2) // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) // Let s=sin(x), c=cos(x), // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then // // n sin(xn)*sqt2 cos(xn)*sqt2 // ---------------------------------- // 0 s-c c+s // 1 -s-c -c+s // 2 -s+c -c-s // 3 s+c c-s var temp float64 switch s, c := Sincos(x); n & 3 { case 0: temp = s - c case 1: temp = -s - c case 2: temp = -s + c case 3: temp = s + c } b = (1 / SqrtPi) * temp / Sqrt(x) } else { a := Y0(x) b = Y1(x) // quit if b is -inf for i := 1; i < n && !IsInf(b, -1); i++ { a, b = b, (float64(i+i)/x)*b-a } } if sign { return -b } return b }